猴群算法python
时间: 2025-10-21 08:57:47 AIGC 浏览: 2
猴群算法是一种模拟猴群行为的智能优化算法,通过模拟猴群的攀爬、观望和迁移三种核心行为实现寻优,适用于连续空间优化问题,其核心思想是平衡局部精细搜索与全局探索 [^1]。不过给定引用中未提供具体的 Python 实现代码,以下是一个简化的猴群算法 Python 实现示例:
```python
import numpy as np
# 目标函数,这里以 Rosenbrock 函数为例
def rosenbrock(x):
return sum(100.0 * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)
# 猴群算法类
class MonkeyAlgorithm:
def __init__(self, n_dimensions, n_monkeys, max_iter, step_size, bounds):
self.n_dimensions = n_dimensions
self.n_monkeys = n_monkeys
self.max_iter = max_iter
self.step_size = step_size
self.bounds = bounds
self.monkeys = np.random.uniform(bounds[0], bounds[1], (n_monkeys, n_dimensions))
self.fitness = np.array([rosenbrock(monkey) for monkey in self.monkeys])
self.best_monkey = self.monkeys[np.argmin(self.fitness)]
self.best_fitness = np.min(self.fitness)
# 攀爬行为
def climb(self):
new_monkeys = self.monkeys + self.step_size * np.random.uniform(-1, 1, self.monkeys.shape)
new_monkeys = np.clip(new_monkeys, self.bounds[0], self.bounds[1])
new_fitness = np.array([rosenbrock(monkey) for monkey in new_monkeys])
update_indices = new_fitness < self.fitness
self.monkeys[update_indices] = new_monkeys[update_indices]
self.fitness[update_indices] = new_fitness[update_indices]
# 观望行为
def watch(self):
best_index = np.argmin(self.fitness)
for i in range(self.n_monkeys):
if i != best_index:
direction = (self.monkeys[best_index] - self.monkeys[i])
new_monkey = self.monkeys[i] + self.step_size * np.random.uniform(0, 1) * direction
new_monkey = np.clip(new_monkey, self.bounds[0], self.bounds[1])
new_fitness = rosenbrock(new_monkey)
if new_fitness < self.fitness[i]:
self.monkeys[i] = new_monkey
self.fitness[i] = new_fitness
# 迁移行为
def migrate(self, migrate_rate=0.2):
n_migrate = int(self.n_monkeys * migrate_rate)
migrate_indices = np.random.choice(self.n_monkeys, n_migrate, replace=False)
self.monkeys[migrate_indices] = np.random.uniform(self.bounds[0], self.bounds[1], (n_migrate, self.n_dimensions))
self.fitness[migrate_indices] = np.array([rosenbrock(monkey) for monkey in self.monkeys[migrate_indices]])
# 运行算法
def run(self):
for _ in range(self.max_iter):
self.climb()
self.watch()
self.migrate()
current_best_index = np.argmin(self.fitness)
if self.fitness[current_best_index] < self.best_fitness:
self.best_fitness = self.fitness[current_best_index]
self.best_monkey = self.monkeys[current_best_index]
return self.best_monkey, self.best_fitness
# 参数设置
n_dimensions = 2
n_monkeys = 50
max_iter = 100
step_size = 0.1
bounds = [-5, 5]
# 创建并运行算法
ma = MonkeyAlgorithm(n_dimensions, n_monkeys, max_iter, step_size, bounds)
best_solution, best_value = ma.run()
print(f"Best solution: {best_solution}, Best value: {best_value}")
```
### 代码解释:
1. **目标函数**:使用 Rosenbrock 函数作为示例目标函数,可根据实际需求替换。
2. **猴群算法类**:包含初始化、攀爬、观望、迁移和运行方法。
3. **攀爬行为**:在当前位置附近小步长探索邻域。
4. **观望行为**:猴子观察群体中最优个体并向其方向移动。
5. **迁移行为**:随机更换部分个体位置,增加种群多样性。
6. **运行算法**:循环执行攀爬、观望和迁移行为,更新最优解。
### 注意事项:
- 代码中的参数(如猴子数量、最大迭代次数、步长等)可根据具体问题进行调整。
- 目标函数可根据实际需求进行修改。
阅读全文
相关推荐


















